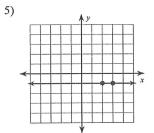
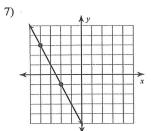
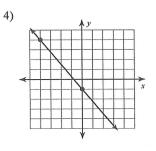
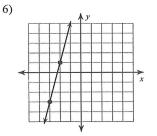
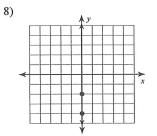

Use the 2 points indicated to solve for slope. You can use $\frac{rise}{run}$ but you **MUST** show work!

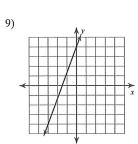

Kuta Software - Infinite Algebra 1 Finding Slope From a Graph Find the slope of each line.

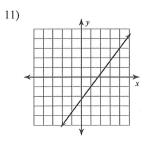


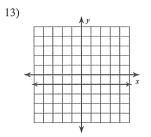


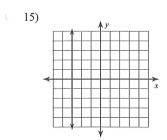

Period_

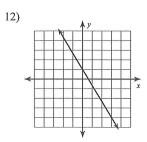


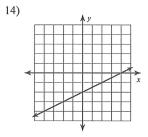


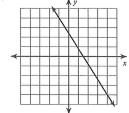












-2-

Must Show work with formula for slope!

Kuta Software - Infinite Algebra 1 Finding Slope From Two Points	Name Date	Period
Find the slope of the line through each pair of		
1) (19, -16), (-7, -15)	2) (1, -19), (-2, -7)	
3) (-4, 7), (-6, -4)	4) (20, 8), (9, 16)	
5) (17, -13), (17, 8)	6) (19, 3), (20, 3)	
7) (3, 0), (-11, -15)	8) (19, -2), (-11, 10)	
	-1-	

11) (3, -20), (5, 8)

12) (15, 8), (-17, 9)

13) (-19, 12), (-9, 1)

14) (12, 2), (-7, 5)

15) (6, -12), (15, -3)

16) (9, 3), (19, -17)

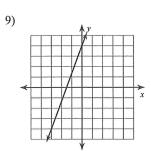
Kuta Software - Infinite Algebra 1 Name_ Finding Slope From an Equation Date_____ Period____ Find the slope of each line. 1) $y = -\frac{5}{2}x - 5$ 2) $y = -\frac{4}{3}x - 1$ 3) y = -x + 34) y = -4x - 15) 2x - y = 16) x + 2y = -87) 8x + 3y = -98) 4x + 5y = -1010) 4x - 3y = 99) x - y = -2-1-

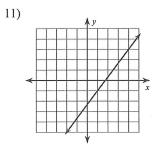
11)
$$3x + 2y = 6$$
12) $4x - 5y = 0$

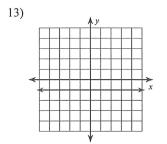
13) $y = -1$
14) $x + 5y = -15$

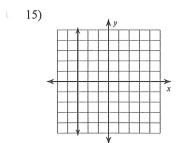
15) $-2y - 10 + 2x = 0$
16) $x + 5 + y = 0$

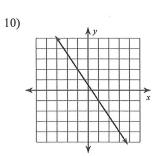
17) $3x + 20 = -4y$
18) $-15 - x = -5y$

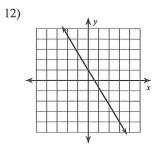

19) $-1 = -2x + y$
20) $-x - 1 = y$

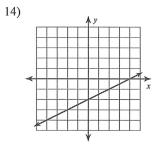

21) $0 = 5y - x$
22) $-30 + 10y = -2x$

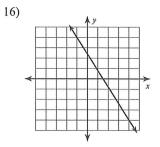

-2-

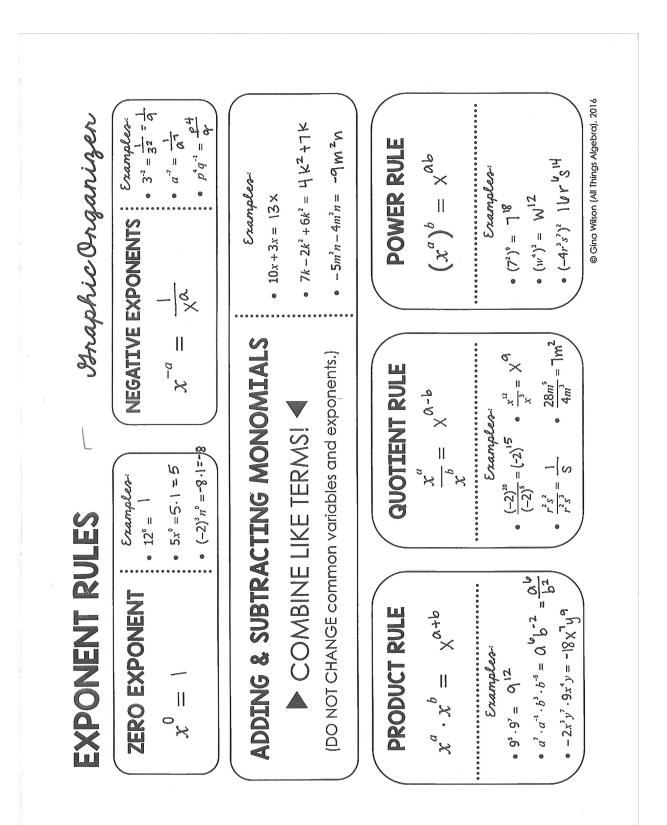

Identify y-intercept and slope, then graph.


Kuta Software - Infinite Algebra 1 Name Graphing Lines Period_ Date Sketch the graph of each line. 2) y = -6x + 31) $y = \frac{7}{2}x - 2$ 3) y = -54) $y = \frac{6}{5}x + 1$ x 5) $y = \frac{1}{4}x + 2$ 6) x = 5x -1-









-2-

Group Members:

ReView: Operations with Monomials

Directions: Work together to simplify each expression using the **exponent rules.** Do not divide up the work! Each person should be participating. At the end of class, one person's paper will be chosen at random and graded for the group.

RUIES REVIEW

Zero Exponent $x^0 =$	Negative Exponent $x^{-a} =$	Product Rule $x^{a} \cdot x^{b} =$	Quotient Rule $\frac{x^a}{x^b} =$	Power Rule $(x^a)^b =$
What is the rule for adding and subtracting monomials?				

Directions: Fill in the box with the missing exponent.			
1. $6^2 \cdot 6^{-12} = 6^{12}$	2. $\frac{(-2)^{-7}}{(-2)^5} = (-2)^{-7}$	3. $(x^5)^{\square} = x^{15}$	4. $3a^5b^8 + a^5b^8 = 4a^6b^8$

ADDING & SUBTRACTING MONOMIAIS

Directions: Simplify each expression.			
5. $6w^2 + 11w^2$	6. $-2x^{13}y^6 - 8x^{13}$	y ⁶	7. -5 <i>rs</i> - (-5 <i>rs</i>)
8. -5 <i>ab</i> - 6 <i>b</i> + 19 <i>ab</i> - <i>b</i>	9. $4x^2 - 3x - x - $	$27 + 5x^2$	10. $15mn - m^2 + n^2 - 28mn + 3m^2$
11. Subtract 8 <i>rs</i> from (–3 <i>rs</i>).		12. Find the sum	n of $2p^{5}q^{7}$ and $(-16p^{5}q^{7})$.

MUITIPIAL & DIVIDING MONOMIAIS

Directions: Simplify each expression. Final answers must contain only positive exponents.			
13. $x^7 \cdot x^5$	14. $w^{-3} \cdot w^{-4}$ 15. $(7k^4)(3k^9)$		

© Gina Wilson (All Things Algebra), 2016

16. $6a^{-2}b^{-1} \cdot (-2a^{11}b^{-4})$	17. $\frac{6^{12}}{6^{14}}$	18. $\frac{m^{7} n^{16}}{m^{4} n^{2}}$
19. $\frac{45p^3}{5p^{-1}}$	20. $\frac{20a^{-2}}{-10a^{-10}}$	21. $\frac{16c^{-6}d^{-2}}{12c^{-5}d^{2}}$

powers of monomials

Directions: Simplify each expression. Final answers must contain only positive exponents.		
22. (3 ⁴) ⁵	23. $(k^3)^8$	24. $(w^{-2})^9$
25. $(9w^7)^2$	26. $(-2a^3b^4)^5$	27. $(4r^2s^{-1})^{-3}$

mixed practice

Directions: Simplify each expression. Final answers must contain only positive exponents.			
28. $\frac{15h^{16}}{5h^4} \cdot 9h^2$	29. $19x^8y^{18} - (6x^4y^9)^2$	30. $\frac{28p^5}{(2p^4)^3}$	
31. $-6m^{5}n^{2} \cdot 2m^{2}n^{9} + 15m^{7}n^{11}$	32. $(12w^7 \cdot \frac{5}{6}w^{-3})^2$	33. $\frac{-8p^8 \cdot 12p^6}{16p^3}$	
34. $-7r^4s^{15} + \frac{20r^{-2}s^{16}}{4r^{-6}s}$	35. $\frac{18x^5y}{10xy^2 - 2xy^2}$	36. $(2c^5d^2 - 5c^5d^2)^4$	
© Gina Wilson (All Things Algebra), 2016			